Skip to main content

Simulation and analysis of physical processes

A wide range of applications are covered with numerical simulations; from very low convective speeds up to hypersonic, steady state calculations and time resolved, including dynamic fluid structure interaction (FSI).

The reduced initial expenditure makes numerical simulations ideal for preliminary configuration studies. In conjunction with experimental data validation, CFD allows detailed flow analysis in the design envelope, which may not be entirely covered by wind tunnel testing.

Competence and experience at the highest level



Studies from aerospace to civil engineering and indoor climate control form the foundation of valuable experience for supporting your applications.


We use synergies between numerical and experimental methods. With CFD simulations, we ensure valid results and shorten your development process.

Tools & Methods

Choosing the appropriate solver and methodology for your challenge will result in the best and most efficient simulation results..


Andreas Hauser
Section Lead Aerodynamics
Schiltwaldstrasse 1
6032 Emmen


There is no “silver bullet” in numerical flow simulation. To generate accurate results over the different aerodynamic regimes covered by our simulation capabilities, different solvers have to be used, each having its strengths and weaknesses. This leads to a mix of structured and unstructured solvers, based on Navier Stokes as well as Lattice Boltzmann approaches:

  • NSMB (in-house code developed by CFSE, RANS, structured)
  • OpenFOAM (open source, RANS, unstructured)
  • SU2 (open source, RANS, unstructured)
  • XFlow (commercial, LBM)
  • Star-ccm+ (commercial, unstructured)

Low-speed External Flow Simulation

Typical low speed applications for CFD at RUAG cover trains, turbofan simulators, aircraft, helicopter and all sorts of airfoils in high-lift-configuration (takeoff/landing). High lift configurations are often measured in the RUAG Wind Tunnel allowing direct comparison of CFD to experimental results.


Simulation & Analyse
High vorticity, starting from the extension of the leading edge of the wing, leads to high-energy flow over the wings. Simulation of fluid-structure interaction supports prediction of maintenance points.

High-speed Flow Simulation

Transonic, supersonic and hypersonic speeds are covered with high speed CFD methods. The application ranges from business jets and fighter aircraft, over missile payload fairings, small-arms projectiles up to reentry vehicles.

Internal Flow Simulation

A heavy focus in internal flow simulation at RUAG lies on the support for wind tunnel airline improvements and model equipment designs.

Heat, Ventilation and Air-Conditioning

Passenger comfort and air filtration play an important role in today’s aircraft design. Heat, ventilation and air-conditioning systems are often optimized using numerical simulation, e.g. CFD for cabin flow. These simulations are quite complex, as natural and enforced convection as well as radiation have to be taken into account. Additionally, the turbulent characteristics of these types of flow often require the use of large eddy simulation (LES).

RUAG looking into
Convective and active airflow inside the passenger cabin.


Would you like to learn more about our services? Here, you can download various additional information.

Capability Booklet Aerodynamics PDF